机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)

介绍:使用卷积神经网络的图像缩放.

介绍:ICML2015 论文集,优化4个+稀疏优化1个;强化学习4个,深度学习3个+深度学习计算1个;贝叶斯非参、高斯过程和学习理论3个;还有计算广告和社会选择.ICML2015 Sessions.

介绍:使用卷积神经网络的图像缩放.

介绍:,第28届IEEE计算机视觉与模式识别(CVPR)大会在美国波士顿举行。微软研究员们在大会上展示了比以往更快更准的计算机视觉图像分类新模型,并介绍了如何使用Kinect等传感器实现在动态或低光环境的快速大规模3D扫描技术.

介绍:(文本)机器学习可视化分析工具.

介绍:机器学习工具包/库的综述/比较.

介绍:数据可视化最佳实践指南.

介绍:Day 1Day 2Day 3Day 4Day 5.

介绍:深度学习之“深”——DNN的隐喻分析.

介绍:混合密度网络.

介绍:数据科学家职位面试题.

介绍:准确评估模型预测误差.

介绍:Continually updated Data Science Python Notebooks.

介绍:How to share data with a statistician.

介绍:来自Facebook的图像自动生成.

介绍:How to share data with a statistician.

介绍:(Google)神经(感知)会话模型.

介绍:The 50 Best Masters in Data Science.

介绍:NLP常用信息资源.

介绍:语义图像分割的实况演示,通过深度学习技术和概率图模型的语义图像分割.

介绍:Caffe模型/代码:面向图像语义分割的全卷积网络,模型代码.

介绍:深度学习——成长的烦恼.

介绍:基于三元树方法的文本流聚类.

介绍:Free Ebook:数据挖掘基础及最新进展.

介绍:深度学习革命.

介绍:数据科学(实践)权威指南.

介绍:37G的微软学术图谱数据集.

介绍:生产环境(产品级)机器学习的机遇与挑战.

介绍:神经网络入门.

介绍:来自麻省理工的结构化稀疏论文.

介绍:来自雅虎的机器学习小组关于在线Boosting的论文 .

介绍:20个最热门的开源(Python)机器学习项目.

介绍:C++并行贝叶斯推理统计库QUESO,github code.

介绍:Nature:LeCun/Bengio/Hinton的最新文章《深度学习》,Jürgen Schmidhuber的最新评论文章《Critique of Paper by “Deep Learning Conspiracy” (Nature 521 p 436)》.

介绍:基于Scikit-Learn的预测分析服务框架Palladium.

介绍:John Langford和Hal Daume III在ICML2015上关于Learning to Search的教学讲座幻灯片.

介绍:读完这100篇论文 就能成大数据高手,国内翻译.

介绍:NLP课程《社交媒体与文本分析》精选阅读列表.

介绍:写给开发者的机器学习指南.

介绍:基于维基百科的热点新闻发现.

介绍:(Harvard)HIPS将发布可扩展/自动调参贝叶斯推理神经网络.

介绍:面向上下文感知查询建议的层次递归编解码器.

介绍:GPU上基于Mean-for-Mode估计的高效LDA训练.

介绍:从实验室到工厂——构建机器学习生产架构.

介绍:适合做数据挖掘的6个经典数据集(及另外100个列表).

介绍:Google面向机器视觉的深度学习.

介绍:构建预测类应用时如何选择机器学习API.

介绍:Python+情感分析API实现故事情节(曲线)分析.

介绍:(R)基于Twitter/情感分析的口碑电影推荐,此外推荐分类算法的实证比较分析.

介绍:CMU(ACL 2012)(500+页)面向NLP基于图的半监督学习算法.

介绍:从贝叶斯分析NIPS,看同行评审的意义.

介绍:(RLDM 2015)计算强化学习入门.

介绍:David Silver的深度强化学习教程.

介绍:深度神经网络的可解释性.

介绍:Spark快速入门.

介绍:TalkingMachines:面向体育/政治和实时预测的机器学习.

介绍:Stanford社交网络与信息网络分析课程资料+课设+数据.

介绍:David Silver(DeeMind)的强化学习课程,slide.

介绍:基于Theano/GPU的高效深度学习.

介绍:来自微软的.

介绍:(Go)情感分析API服务Sentiment Server.

介绍:受限波尔兹曼机初学者指南.

介绍:Mining and Summarizing Customer Reviews ,Mining High-Speed Data Streams,Optimizing Search Engines using Clickthrough Data.

介绍:Nvidia深度学习课程.

介绍:神经网络与深度学习课程.

介绍:2015年深度学习暑期课程,推荐讲师主页.

介绍:这是一篇关于百度文章《基于深度学习的图像识别进展:百度的若干实践》的摘要,建议两篇文章结合起来阅读.

介绍:视频标注中的机器学习技术.

介绍:博士论文:(Ilya Sutskever)RNN训练.

介绍:深度神经网络的灰色区域:可解释性问题,中文版.

介绍:Golang 实现的机器学习库资源汇总.

介绍:深度学习的统计分析.

介绍:面向NLP的深度学习技术与技巧.

介绍:Kaggle’s CrowdFlower竞赛NLP代码集锦.

来源:https://github.com/ty4z2008/Qix/blob/master/dl2.md

About 智足者富

http://chenpeng.info

发表评论

电子邮件地址不会被公开。 必填项已用*标注

您可以使用这些HTML标签和属性:

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>